
© 2017 A.L.S.E - Bert Cuzeau
LT24 / ILI9341 Application Note v2.1
All rights reserved.

Introduction

I got questioned a few days ago by an EE teacher who purchased the $39 Terasic LT24 240 x 320 LCD
display extension to FPGA kits, and didn’t understand how to use it. At ALSE, we have designed tens of
interfaces for various LCD displays. Altera also offers a parametrizable Qsys module (CVO) that can
accommodate most video outputs (parallel RGB + Hsync + Vsync + Pixel Clock), and I suspected it should
be straightforward to drive the LT24, so I took a look at the datasheets involved and decided to dedicate a
few hours of my Week-End to this matter.

The LT24 LCD array is controlled by an autonomous controller: the ILITEK ILI9341, which embarks a
graphic memory array and can autonomously display and refresh the LCD array. However, the ILI9341
does not embed an internal graphic processor and it must receive all the pixels values (through various
possible interfaces, either serial or parallel). This controller is very popular for older mobile phones and now
small micro-controllers use, because of the display autonomous behavior (no need to continuously refresh)
and the ability to drive it serially with very few signals (starting with 2 !).
While reading the controller’s documentation, I noticed the “RGB mode” which is the usual “Hsync/Vsync”
interface and thought it would be the easiest mode to use.
Very unfortunately, Terasic hasn't wired HSync-Vsync-DotClock signals, so the direct RGB mode cannot
be used, and the parallel “16-bits CPU interface” must be used (this mode is hardwired).

Note that no serial interface has been wired either, but there is nothing to regret here : a complete HE10-
40 connector is used by the display anyway, and the 16 bits parallel interface retained is the fastest (and is
also very simple to implement in an FPGA). This link can allow the transfer of up to 10 Mbytes/s, fast
enough to redraw the entire screen in just 10 ms (ie up to 100 times per second).

So it seemed that, even if some code had to be written (to drive the parallel interface), it would be
straightforward... In reality, starting from scratch and displaying patterns on the screen is still quite a
challenge, as can be witnessed in several forums :

1) The controller is quite complex, it has 48 Level 1 commands, 36 Level 2 commands, and the
documentation (245 pages Manual) contains no practical examples.

2) Setting up the controller correctly is very challenging. The documentation does not provide a
“typical initialization sequence”. And the LT24 requires non-default settings to work !

3) I don’t think there is anything useful in the Terasic “examples” nor “documentation”. I recommend to
completely ignore them and use this ApNote and the accompanying code to build your own
solutions. The only useful data is the pin assignment to the HE-10 connector and the ILI9341.pdf
Controller’s Manual (make sure you don’t use a preliminary version from the Internet).

4) I didn’t find straight answers using Google. However, you’ll see that C graphics libraries have been
developed for this controller, and should be easy to port to your FPGA provided you decide to use a
Nios II embedded processor, master the initialization sequence, and design the parallel interface.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 1

A.L.S.E Application Note
Using the LT24 / ILI9341

About A.L.S.E

As of end 2016, ALSE is a 23 years old company consisting in 7 Expert Engineers (Hardware and
Software), and being a valued Intel-FPGA partner, Certified Design Center and Certified Training Center.

ALSE is located in Paris France and offers a wide range of Digital Design Services, IPs and Training
Courses, serving customers in France, in Europe and all around the world.

➢ Design Services : turnkey designs, complex hardware functions, hardware acceleration, System
and Board Level Design, Audits, Methodology assistance…

➢ Intellectual Property blocks (IPs) including 1G and 10G Ethernet communication (hardware
stacks), numerous high-performance Memory Controllers, Video & Image Compression &
Decompression (JPEG, Wavelet), Video IP blocks, Security, Hardware GZIP, Industrial
Networks...

➢ Training Services : all the EE languages and Methodologies including Digital Design, VHDL,
Verilog, SystemVerilog, SystemC, TLM2.0, UVM, PSL, Tcl/Tk etc…

➢ All the Intel-FPGA training courses.

➢ Embedded Systems Design Services and Training courses.

Please visit our web sites (in English and in French).

Principles of the LT24 Reference Designs

To debug the screen initialization and investigate how the display can be driven, I started with the design of
a Hardware Reference Design : a simple HDL module based on a State Machine that parses a list of
(easily modifiable) commands & data, and sends them to the LT24 with optional delays between
commands (a requirement after some commands).
This list can be edited quickly and tried on the screen after a 30 seconds compilation and download.

This design can serve as a base for any application that does not use an embedded processor.

For applications that use a processor, the solution is also very straightforward :

➢ Add a 22 bits PIO (output only) to drive all the LT24 signals

➢ The required functions SendCmd(alt_u8 cmd) and SendData(alt_u16 data) are trivial to write.
They are so small that they can be inlined to further speed up the software “driver”.

➢ Use the Initialization sequence that you have validated using this ApNote.

➢ Use an existing ILI9341 C library (Atmel, Arduino, Adafruit etc)

So after having experimented with the HDL solution, I have built a “Software Reference Design”.

Our Reference Designs (Hardware and Software) are described here and they are based on an existing
Max10 FPGA kit, which is not in the list of the supported boards by Terasic. It was not difficult to connect
the LT24 to this board, but the pin assignment had to be entered carefully. The entire Hardware design fits
in just 145 Logic Elements !

The Hardware design was tested by simulation with ModelSim Intel Edition before testing on the board.

The Software design was tested using the NiosII debugger but worked directly.

Both designs used only the free Intel-FPGA tools : Quartus Lite v16.1 and NiosII Software Build Tool (and
indeed the free NiosII/e processor).

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 2

http://www.alse-fr.com/
http://www.alse.fr/
http://www.alse-fr.com/
http://www.alse-fr.com/Embedded-Software-101.html
http://www.alse-fr.com/Embedded-Software-101.html
http://www.alse-fr.com/Trainings-Form.html
http://www.alse-fr.com/-Training-Courses-.html
http://www.alse-fr.com/-IP-s-.html
http://www.alse-fr.com/-Conception-.html

Pin Assignment

To test our design, we used the small and cheap Max10
kit from Arrow : the BeMicroMax10.

The LT24 must be plugged on J3 (top HE10-40) :

See the pin assignment on the right : →

IMPORTANT: the ILI9341 must be driven using 2.5V or
3.3V (max) signals ! This is perfect for FPGA boards like
ours but some micro-controllers still use +5V I/Os and
may require require level shifters.

Top Level Interface to LT24

We have added the LT24 signals to the FPGA top level:

 -- LT24 graphic Controller
 LT_DB : inout std_logic_vector(15 downto 0); -- we use it as OUT only
 LT_WR_n : out std_logic; -- aka WRX
 LT_RD_n : out std_logic; -- aka RDX
 LT_RS : out std_logic; -- aka D/CX
 LT_CS_n : out std_logic; -- aka CSX
 LT_RESET_n : out std_logic; -- aka RESX
 LT_LCD_ON : out std_logic -- Transistor to drive LCD lighting (1 = on)

Note that we drive one LED with the ADC_PEN_IRQ output from the TouchScreen logic, but we have left
the touch screen logic outside this ApNote.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 3

← BeMicroMax10

← LT24

Physical Interface

The ILI9341is very versatile and even parallel interfaces can be 8-9-16 or even 18 bits wide ! The LT24
hardwired selection in the LT24 imposes a 16 bits 8080 type I interface. Some configuration registers also
need to be correctly programmed to take this into account.

A State Machine (FSM) handles the communication with the ILI9341 Controller.

The ILI9341 Manual explains the required timing for this interface. We can note that raising (inactivating)
the Chip Select signal is NOT necessary (Tchw=0). We take CSX low at the beginning of the session and
raise it when the FSM has finished.

To Send a Command or Data :

➢ Set LT_RS (aka D/CX) to ‘0’ (for command) or ‘1’ (for Data)
Set LT_DB to the Command (8 LSBs) or Data (16 bits) value

➢ Set LT_WR_n = ‘0’ (active)

➢ Wait Nsetup system clock cycles

➢ Set LT_WR_n = ‘1’ (going active triggers the actual writing)

➢ Wait Nhold system clock cycles

It’s done through 3 states in the FSM, and our system clock beats at 50 MHz (20 ns).

The principle is documented in the Controller’s Manual :

And at the end of the manual, we find the complete timing diagram :

The timing values can be found under the waveform on the same page.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 4

Initialization Sequence

The pattern is correctly displayed after the following (minimal) initialization :

➢ Hardware Reset (active for 15 ms) followed by 300 ms wait (conservative delay values)
➢ Exit Sleep command (0x11) followed by 800 ms delay (delay to see the effect of the next command)
➢ Display ON (0x29) followed by 1 ms wait
➢ Set COLMOD (0x3A) with parameter 0x0055 (16 bits per pixel, one data per pixel)
➢ SET Memory Access Control (0x36) with BGR filter !
➢ Enable 3G (0xF2) with 0x0000 parameter (disable 3 Gamma)

More settings can be experimented with, once the image is displayed as assured by the above sequence.
You can review and test the (much longer) initialization sequences that can be found in various software
libraries.

It is critical to set up the mode where one Pixel is stored by one unique 16-bits write, since the screen and
the graphic memory are actually 18 bits (RGB 6-6-6) and some modes require several data for one pixel.

This sequence has been developed using the Hardware design and was used as is in the Software design.

Hardware Project

Principle

There is no processor involved in this Hardware project : the “driver” is a Finite State Machine written in
VHDL which generates the timings described on the previous page.

This module could be used in a software project but we'll see that a simple PIO and two trivial functions do
the job nicely, so this Hardware solution will be reserved to projects where no processor will be present.

Pattern with the HDL design

To exercise an important feature, we set up the Starting Column Address and Page address. And we verify
that the pattern starts inside the screen and not at 0,0.

Then we issue the Memory Write Command (0x2C) followed by the pixel values.

The pattern itself is 8 White pixels, 8 Black, 8 Red, 8 Green and 8 Blue, repeated 5 times (200 pixels total).

It is terminated by a NoOp command (no effect).

The (upside-down) picture above shows the displayed pattern (right to left) matching the vectors.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 5

HDL Design Files

The most interesting file of the hardware project is the top-level top.vhd which contains all the logic except
the Frequency divider that creates the 1 millisecond tick used for the various delays. The important parts
are reproduced below, but you can contact ALSE and obtain this file.

The table of vectors is easy to edit :

 subtype Cmd_t is std_logic_vector (28 downto 0);
 -- Dly_ms(12) & C/D & Data(16) - 29 bits, could be a record
 type Commands_t is array (natural range <>) of Cmd_t;

 constant Commands_c : Commands_t := (

-- delay_ms D/Cd_n DB
 x"001" & '0' & x"0011", -- Exit Sleep
-- x"100" & '0' & x"0001", -- Software reset
 x"800" & '0' & x"0029", -- Display ON

 x"001" & '0' & x"003A", -- Set COLMOD
 x"000" & '1' & x"0055", -- non-default 16 bits

 x"000" & '0' & x"0036", -- Memory Access Control
 x"000" & '1' & x"0008", -- non-default BGR filter !

 x"000" & '0' & x"00F2", -- Enable 3G
 x"000" & '1' & x"0000", -- non-default = disable 3 gamma

 x"000" & '0' & x"002A", -- Set Column address
 x"000" & '1' & x"0000", --
 x"000" & '1' & x"0010", -- 16

 x"000" & '0' & x"002B", -- Set Page address
 x"000" & '1' & x"0000", --
 x"000" & '1' & x"000A", -- 10

 x"000" & '0' & x"002C", -- Memory Write

 x"000" & '1' & x"FFFF", -- WHITE
 x"000" & '1' & x"FFFF", -- WHITE
 x"000" & '1' & x"FFFF", -- WHITE
 x"000" & '1' & x"FFFF", -- WHITE
 ETC ETC ETC

The State Machine reproduced below holds the parsing of the table above and the communication logic.

-- ---------------------------
-- ILI9341 interface
-- ---------------------------
-- CSX can be kept low
-- Write cycle > 66ns = 100 ns (5c = 2 + 3) can work
-- Tdst data setup > 10 ns
-- Tdht data hold > 10 ns
-- /!\ Data read (not used here) is SLOW (500 ns)

LT_RD_n <= '1'; -- we don't read

process (Clk,Rst)
begin
 if Rst='1' then
 State <= Boot;
 LT_DBi <= (others=>'0');
 LT_WR_n <= '1';
 LT_CS_n <= '1';
 LT_RS <= '0';
 LT_RESET_n <= '0';
 LT_LCD_ON <= '0';
 Index <= 0;
 Cntr <= 15;
 Cycle <= 0;
 Cmd <= (others=>'0');

 elsif rising_edge(Clk) then

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 6

 Cmd <= Commands(Index);

 case State is

 when Boot =>
 LT_RESET_n <= '0';
 Index <= 0;
 if Tick1ms='1' then
 if Cntr=0 then
 LT_RESET_n <= '1';
 Cntr <= 300;
 State <= Idle;
 else
 Cntr <= Cntr - 1;
 end if;
 end if;

 when Idle =>
 if Cntr=0 then
 LT_LCD_ON <= '1'; -- Light ON
 LT_CS_n <= '0';
 State <= GetCmd;
 elsif Tick1ms='1' then
 Cntr <= Cntr - 1;
 end if;

 when GetCmd =>
 Cntr <= to_integer(unsigned(Cmd(Cmd_t'high downto Cmd'high-11)));
 LT_DBi <= Cmd(LT_DBi'range);
 LT_RS <= Cmd(LT_DBi'length);
 State <= Dly;

 when Dly =>
 if Cntr = 0 then
 Cycle <= Nsetup-1;
 LT_WR_n <= '0';
 State <= Wr1;
 elsif Tick1ms='1' then
 Cntr <= Cntr-1;
 end if;

 when Wr1 => -- Setup
 if Cycle = 0 then
 Cycle <= Nhold-1;
 LT_WR_n <= '1'; -- rising edge (trig write)
 State <= Wr2;
 else
 Cycle <= Cycle-1;
 end if;

 when Wr2 => -- Hold
 if Cycle = 0 then
 State <= Done;
 else
 Cycle <= Cycle-1;
 end if;

 when Done =>
 if Index=Commands'length-1 then -- last command has been sent
 LT_CS_n <= '1'; -- de-select the interface
 State <= Done; -- deadlock (default)
 else
 Index <= Index + 1; -- fecth next vector
 State <= Done1;
 end if;

 when Done1 => -- compensate double pipeline
 State <= GetCmd;

 end case;

 end if;
end process;

As we can see, interfacing to the Controller in hardware requires less than one page of code !
We'll see it's even simpler in software.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 7

Software Project

Building the System

In just a few minutes, we build a System On Programmable Chip System using Qsys in which we place :

➢ A clock source (compulsory)

➢ A Nios II / e 32 bits RISC processor, with the simple JTag debugger active

➢ An 16k bytes Internal Memory block “On_chip_RAM” (used for NiosII Data and Program)

➢ A 22 bits PIO used for Write only.

➢ A JTag UART to issue printf (not really useful !)

This generates the following simple component :

component Nios is
 port (clk_clk : in std_logic;
 reset_reset_n : in std_logic;
 pio_export : out std_logic_vector(21 downto 0)); -- export
end component Nios;

We insert this component in our top level (we re-use the Hardware project's top level and remove the HDL
controller)

sopc : Nios port map (
 clk_clk => Clk,
 reset_reset_n => Reset_n,
 pio_export => PIO_D);

and we connect the PIO to the LT24 signals :

LT_DB <= PIO_D(15 downto 0);
LT_LCD_ON <= PIO_D(21);
LT_RESET_n <= PIO_D(20);
LT_CS_n <= PIO_D(19);
LT_WR_n <= PIO_D(18);
LT_RD_n <= '1'; -- PIO_D(17) make sure we do NOT read !
LT_RS <= PIO_D(16);

By safety, I have inhibited the read line since we drive the databus without a tristate (bidir).

The hardware system is indeed much bigger than the Hardware design, but it does include a processor
and still occupies only a fraction (~ 1,700 LEs) of the small Max10-08 device !
It could be further reduced by removing the JTag UART (and the debugger).

NOTE !
For a better job, I could have added : the SystemID block (as we recommend in all our training courses !)
and a High-Resolution Timer if we wanted to do some high precision profiling of the graphic interface.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 8

Writing the Software

I used the free “NiosII Software Build Tools for Eclipse” to create the Board Support Package and write our
software driver and application. Note that I am not an Embedded nor a Software specialist, so I just took
the easiest path to create this Software Solution. Even for me, creating and programming the system is a
really simple process.

A nice trick is to start from the “Hello World Small” template, since it does directly include the optimal
settings to create very compact code for simple applications (we want to stay in the internal memory for this
demonstrator and leave room for a library and graphic application code).

LT24 signals

We will drive the LT24 signals simply by writing in our PIO, with the signals assigned as described in the
previous page : LCD_ON | RESETn | CSn | WRn | RDn_D/Cn.
We use constants to make the code easier to read.

Constants

#define WHITE 0xFFFF
#define BLACK 0x0000
#define RED 0xF800
#define GREEN 0x07E0
#define BLUE 0x001F

// LCD_ON | RESETn | CSn | WRn | RDn_D/Cn
// WriteCommand : 1_1_0_0_1_0 -> 1_1_0_1_1_0
// WriteData : 1_1_0_0_1_1 -> 1_1_0_1_1_1
#define LT24_ResetS (0x27 << 16)
#define LT24_ResetE (0x37 << 16)
#define LT24_CmdS (0x32 << 16)
#define LT24_CmdE (0x36 << 16)
#define LT24_DataS (0x33 << 16)
#define LT24_DataE (0x37 << 16)

#define Exit_Sleep 0x11
#define Display_ON 0x29
#define COLMODE 0x3A
#define MemAccessCtr 0x36
#define Enable3G 0xF2
#define SetColAddr 0x2A
#define SetPageAddr 0x2B
#define MemWrite 0x2C

Functions

The two inlined functions are doing the job of sending Data and Commands to the ILI9341 Controller, and
PrintBar() does display a pattern much like in the hardware project :

void inline SendCmd (alt_u8 cmd) {
IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE, LT24_CmdS | cmd);
IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE, LT24_CmdE | cmd);

}
void inline SendData (alt_u16 data) {

IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE, LT24_DataS | data);
IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE, LT24_DataE | data);

}
void PrintBar (void) {

SendCmd(MemWrite);
for (int i=0; i<32; i++) SendData(WHITE);
for (int i=0; i<32; i++) SendData(BLACK);
for (int i=0; i<32; i++) SendData(RED);
for (int i=0; i<32; i++) SendData(GREEN);
for (int i=0; i<32; i++) SendData(BLUE);

}

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 9

main Program

The main program is extremely simple and the complete demo is compact (450 words) :

int main()
{
 alt_putstr("LT24 Demo by ALSE !\n");
 IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE,LT24_ResetS);
 usleep (20);
 IOWR_ALTERA_AVALON_PIO_DATA (PIO_BASE,LT24_ResetE);
 usleep (150000);
 // Initialize the controller's parameters
 SendCmd(Exit_Sleep);
 SendCmd(Display_ON);
 SendCmd(COLMODE);
 SendData(0x0055);
 SendCmd(MemAccessCtr);
 SendData(0x0008);
 SendCmd(Enable3G);
 SendData(0x0000);

 SendCmd(SetColAddr);
 SendData(0x0000);
 SendData((alt_u16)16);

 // Display a pattern of 32x32 colors (White Black Red Green Blue)
 for (int j=16; j<48; j++) {
 SendCmd(SetPageAddr); SendData(0x0000); SendData((alt_u16)j);
 PrintBar();
 }
 /* Event loop never exits. */
 while (1);
 return 0;
}

Color Pattern result

We see exactly what we expected : 32x32 color patterns.
Again this did not involve much code nor much complexity.

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 10

Conclusion

As you should now realize, the Terasic LT24 may not be the simplest choice in terms of LCD display : other
displays driven in RGB mode (Hsync/Vsync) are typically more common, but the LT24 is in the class of
autonomous displays that do not need to receive data continuously. This is a tremendous advantage for
use with a low cost microcontroller, but much less with an FPGA.

However, this kind of display can be found at low prices (< $10 per unit) and sending a frame buffer from
an FPGA to the LT24 over the 16-bits MCU interface is not very difficult (as demonstrated here) and can
achieve high enough frame rates (thus allowing video). If you want to go in this direction, you can easily
modify the FSM provided here to suit your application needs.

If you plan to display Texts and 2D graphics (GUI), ALSE has developed a S prite-based H ardware Graphic
Engine (“Gradien”) that could also be used for this purpose.
But a processor-based system as demonstrated in the second part of this Application Note, associated with
a graphics library is a straightforward and more usual solution.

I hope you enjoyed these Reference Designs and they will help you use
cheap LCDs for your FPGA applications.

Bertrand Cuzeau – A.L.S.E
Tel +33 (0)1 84 16 32 32 – info at alse-fr dot com

© 2017 A.L.S.E. - B. Cuzeau ApNote: LT24 & ILI9341 11

http://www.alse-fr.com/Graphic-Display.html
http://www.alse-fr.com/Graphic-Display.html
http://www.alse-fr.com/Graphic-Display.html
http://www.alse-fr.com/Graphic-Display.html
http://www.alse-fr.com/Graphic-Display.html

	Introduction
	About A.L.S.E
	Principles of the LT24 Reference Designs
	Pin Assignment
	Top Level Interface to LT24
	Physical Interface
	Initialization Sequence
	Principle
	Pattern with the HDL design
	HDL Design Files
	Building the System
	Writing the Software
	LT24 signals
	Constants
	Functions
	main Program

	Color Pattern result
	Conclusion

